Bayesian inference for nonlinear stochastic SIR epidemic model
نویسندگان
چکیده
منابع مشابه
Stochastic Model of SIR Epidemic Modelling
Threshold theorem is probably the most important development of mathematical epidemic modelling. Unfortunately, some models may not behave according to the threshold. In this paper, we will focus on the final outcome of SIR model with demography. The behaviour of the model approached by deteministic and stochastic models will be introduced, mainly using simulations. Furthermore, we will also in...
متن کاملA tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation.
Likelihood-based inference for disease outbreak data can be very challenging due to the inherent dependence of the data and the fact that they are usually incomplete. In this paper we review recent Approximate Bayesian Computation (ABC) methods for the analysis of such data by fitting to them stochastic epidemic models without having to calculate the likelihood of the observed data. We consider...
متن کاملBayesian Inference for Nonlinear and Non-gaussian Stochastic Volatility Model with Leverage Effect
Stochastic volatility (SV) models provide useful tools to describe the evolution of asset returns, which exhibit time-varying volatility. This paper extends a basic SV model to capture a leverage effect, a fat-tailed distribution of asset returns and a nonlinear relationship between the current volatility and the previous volatility process. The Bayesian approach with the Markov chain Monte Car...
متن کاملSimulation-based Bayesian inference for epidemic models
A powerful and flexible method for fitting dynamic models to missing and censored data is to use the Bayesian paradigm via data-augmented Markov chain Monte Carlo (DA-MCMC). This samples from the joint posterior for the parameters and missing data, but requires high memory overheads for large-scale systems. In addition, designing efficient proposal distributions for the missing data is typicall...
متن کاملStatistical Inference for Stochastic Epidemic Models
We consider continuous-time stochastic compartmental models which can be applied in veterinary epidemiology to model the within-herd dynamics of infectious diseases. We focus on an extension of Markovian epidemic models, allowing the infectious period of an individual to follow a Weibull distribution, resulting in more flexible modelling for many diseases. Following a Bayesian approach we show ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Computation and Simulation
سال: 2015
ISSN: 0094-9655,1563-5163
DOI: 10.1080/00949655.2015.1107561